Extreme SETI Albert Allen Jackson IV Lunar and Planetary Institute, Houston, Texas

 \mathcal{D}

Big Thinks

Freeman Dyson and Nikolai Kardashev

Zubrin(Possible Propulsion Systems, 1995)

-			
Туре	Radiated at	Frequency	Detection
	Source		
Radio*	80-2000 TW	10 – 48 kHz	Yes-Magsails
			~ 100 to 1000
			ly
Visible	120000 TW	IR	Yes –
			Antimatter
			Possibly at
			300 ly
X-Rays	40000 TW	2 - 80 KeV	Marginal at
			~10
			ly-1000ly!
Gamma Rays	1 – 32 MeV	20-200 Mev	Maybe

Ansatz

Following the lead of Freeman Dyson and Nikolai Kardashev

I will take the civilization to be Kardashev 2, or K2.

These problems have been solved a K2 civilization.

1)K2 civilization have interstellar flight.

2)K2 civilizations can deploy an instrumentality that can 'engineer' a local Astronomical environment.

3) Whatever the problem a K2 civilization can solve it.

Is all this possible?

 \mathcal{D}

Science Fiction prose writers have been doing it for almost 80 years now,so what the hell!

Neutron Star and Black Hole Beacons

Bombing Neutron Stars
Black Hole Lensing
Kerr Black Hole Bombs

Colgate and Petsheck Ap. J 1983

For a ~ 1km impactor density of iron (8 gm/cm³) E ~ $10^{36} (\frac{m_{imp}}{10^{16}}) ergs$

Colgate and Petsheck Ap. J 1983

Extreme SETI

Gravitational Lensing

For a week deflector and/or the source far away:

$$\alpha = \frac{4GM_{Sun}}{c^2 R_{Sun}} = 1.7 \text{ arcsec} \qquad \qquad gain \approx \frac{2\sqrt{GM}}{D} D \to 0 \text{ gain } \to \infty$$

Wave Optics

Solve the wave equation

$$g^{\alpha\beta}\partial_{\alpha\beta}\phi = 4\pi T$$

On the Schwarzschild background

 $c^{2}d\tau^{2} = (1 - \frac{2GM}{r})dt^{2} - (1 - \frac{2GM}{r})^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}d\varphi^{2})$

To get the amplitude

$$\phi = \frac{\pi w}{1 - e^{-\pi w}} \left[F_1^1(\frac{iw}{2}, \frac{iwyD^2}{2}) \right]$$

 $w = 4GM\omega$ and F_1^1 is a confluent Hypergeometric function

As D goes to 0 the amplification and $w \rightarrow \infty$

$$\phi \phi^* \approx \mu = 10^5 \left(\frac{M}{M_{sun}}\right) \left(\frac{\omega}{GH_z}\right)$$

For visible light $\omega\sim 500~TH_z$, M=5 Solar Masses then

 $\mu = 10^{17}$, so 1 watt in 10^5 terawatts out.

Extreme SETI

11

Gravitational Lensing Constellation

Kerr Black Hole Bomb Beacons

The rotational energy in the Ergosphere of a Kerr BH ~ 10^{52} to 10^{54} ergs! Ω = angular speed of Outer horizon Note Angular Momentum (J) parameter $a = \frac{J}{Mc}$

Extreme SETI

The scalar wave equation on the Kerr background

$$g^{\alpha\beta}\partial_{\alpha\beta}\phi = 4\pi T$$

By separation of variables this has the solution

$$\phi = e^{-i\omega t} e^{lm\varphi} S_l^m(\theta) \frac{\Psi(r)}{r}$$

Where (t,r,θ,ϕ) are time and spherical coordinates , ω is the frequency, 1 is the spheroidal harmonic index and m is the azimuthal harmonics index.

Where (t,r,θ,ϕ) are time and spherical coordinates, ω is the frequency, l is the spheroidal harmonic index and m is the azimuthal harmonics index. When boundary conditions are applied for the ingoing and outgoing wave it found that the wave extracts a small amount of energy of the rotating hole. This is called superradiance. If one were to confine the radiation with a spherical mirror there will be exponential growth of the wave amplitude.

For a maximally rotating black hole (a = 1) Outgoing wave gains a small amount of energy on the condition that:

$$\omega \leq m \boldsymbol{\Omega} \text{ or } \omega \approx 16 \frac{M_{\odot}}{M} K H_z$$

For a one solar mass rotating black hole (with a = 1) this is a wave length of about 19 km, extremely long wave length radio waves. The wave can be amplified with a mirror, theory shows for a one solar mass black hole, $R_s = 3$ km, optimum mirror radius = 33 km with an e-folding time of .06 seconds. In 13 seconds the energy content of a pulse in will be 10^{14} (the amplitude squared)! One watt in gives 1 terawatt (10^{12} watts) out!

 \sum

33 km mirror about a one solar mass black hole.

Conclusion

Source	Energy In	Energy Out	Spectrum
Neutron	1 KM	10 ³⁶ ergs	~10 kev
Star Impactor	Iron Sphere		X-rays
	1 watt	1 terrawatt	Visible
Black Hole		(depends on	(depends on the
Lens		the choice of	choice of wave
		wave	length)
		length)	
	1 watt	10 terrawatt	Long wave
Black Hole			Length
Bomb			Radio waves

